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Abstract—The increasing autonomy and connectivity have been
transitioning automobiles to complex and open architectures that
are vulnerable to malicious attacks beyond conventional cyber
attacks. Attackers may non-invasively compromise sensors and
spoof the controller to perform unsafe actions. This concern
emphasizes the need to validate sensor data before acting on
them. Unlike existing works, this paper exploits inherent re-
dundancy among heterogeneous sensors for detecting anomalous
sensor measurements. The redundancy is that multiple sensors
simultaneously respond to the same physical phenomenon in a
related fashion. Embedding the redundancy into a deep autoen-
coder, we propose an anomaly detector that learns a consistent
pattern from vehicle sensor data in normal states and utilizes it
as the nominal behavior for the detection. The proposed method
is independent of the scarcity of anomalous data for training and
the intensive calculation of pairwise correlation among senors as
in existing works. Using a real-world data set collected from tens
of vehicle sensors, we demonstrate the feasibility and efficacy of
the proposed method.

Index Terms—Anomaly detection, autonomous vehicle, sensor,
natural redundancy, autoencoder

I. INTRODUCTION

Modern vehicles demonstrate a complex interaction of many
sensors and Electric Control Units (ECUs) over different types
of networks. With the increasing functionality and network
interoperability, automobiles transfer from isolated systems
to open architectures. While this transition enables various
promising services and applications such as vehicle-to-vehicle
communication and self-driving, it also introduces potential
security vulnerabilities that are easily exploitable [1]–[3].

The interaction between information technology and phys-
ical environment makes automobiles vulnerable to malicious
attacks that are beyond conventional cyber attacks [4], [5].
This issue is demonstrated by non-invasive sensor attacks,
i.e., when a physical environment is compromised to allow
injecting malicious signals into sensors. For instance, the
authors in [6] show spoofing attacks on GPS sensors to
misguide a yacht off course. The authors in [7] present non-
invasive attacks on Antilock Braking Systems, and the authors
in [8] discuss remote attacks on camera and LiDAR. These
attacks can spoof the controller to perform dangerous actions.
With the rise of vehicle autonomy, the security issue is even
more emphasized due to the exacerbated consequences on
safety.

These attacks highlight the importance of validating sensor
data before the controller acts on them. Two existing research
threads addressing this issue are model-based validation and

inherent sensor redundancy. The first thread compares sensor
data with estimated states by the system model to determine
whether the former is maliciously altered [9], [10]. The sec-
ond thread protects against sensor attacks by cross-validating
multiple sensors that measure the same system state [11], [12].

In this work, we investigate a different thread that leverages
inherent redundancy among heterogeneous sensors to detect
anomalies. Inherent sensor redundancy is defined as multiple
sensors simultaneously respond to the same physical aspect
in a related manner. For example, pressing the accelerator
will increase engine RPM and vehicle speed as well as affect
GPS readings. Compared with other research threads, this one
neither depends on the knowledge of the system model nor
has the cost increased by redundant sensors. Nevertheless, it
is challenging to design solutions along this thread. First, there
is a lack of anomalous sensor data available for training. A
solution can solely depend on the data during normal opera-
tion. Further, the conventional assumption of disturbances on
sensing does not apply here. Assuming a specific probability
distribution for anomalous data is infeasible because attackers
may arbitrarily alter sensor measurements.

To address these challenges, we explore the correlation be-
tween heterogeneous sensors due to the inherent redundancy.
The basic idea is first to identify the consistency among
sensor data (e.g., acceleration, engine RPM, vehicle speed,
and GPS), and then utilize it to detect anomalous behaviors of
sensor measurements. To realize this idea, we propose a deep
autoencoder based anomaly detection method for autonomous
vehicles. An autoencoder is an unsupervised machine learning
algorithm built on an artificial neural network [13]. There
are two major components: encoder and decoder, each of
which is represented by multiple hidden layers. The former
compresses input features into a middle code, while the latter
reconstructs an output from the middle code. The objective of
training a deep autoencoder is to minimize the reconstruction
error, that is, the difference between the original input and the
reconstructed output.

Our deep autoencoder learns a consistent pattern from vehi-
cle sensor data in normal states and utilizes it as the nominal
behavior for the detection. We define a threshold based on
the reconstruction error, where corrupted sensor measurements
will result in higher reconstruction errors than the threshold,
while normal data will not. The approach only relies on normal
sensor data and does not restrict the existence of multiple
clusters in the training data set. Further, it does not need to



perform the intensive calculation of pairwise correlation for
each pair of sensors, but implicitly embeds the relationship
among multiple sensors into the deep autoencoder. Finally, we
evaluate our method based on the AEGIS data set collected
from tens of sensors [14], and analyze performance results of
different measures of the reconstruction error. To be specific,
the major contributions of this paper are as follows.

• Observing the inherent redundancy among heterogeneous
sensors, we propose a deep autoencoder based approach
for automotive anomaly detection.

• We demonstrate the effectiveness of our design with real-
world data based experiments and detailed result analysis.

The rest of this paper is organized as follows. Sec-
tion II gives brief description on vehicle sensor data. Sec-
tion III presents the deep autoencoder based anomaly detection
method. Section IV validates the proposed method. Section V
describes the related work. Section VI concludes the paper.

II. PRELIMINARIES OF VEHICLE SENSOR DATA

In this section, we briefly introduce the vehicle sensor data
and threat model used in this paper.

A. Sensor data description

There are many different types of sensors installed on a
vehicle, such as GPS sensors, and Inertial Measurement Unit
(IMU) sensors. These commonly-used sensors are connected
to the CAN bus and typically monitor wheels, accelerator
pedals, and steering wheels. For example, GPS sensors re-
port spatial information, including location and GPS-derived
speeds, and IMU sensors measure physical attitudes such
as body acceleration, gravitational force, pitch degree, and
roll degree. Theses data help the embedded control system
estimate the current state of the vehicle and react to various
circumstances. Table I lists a summary of the sensors and the
corresponding data in the AEGIS dataset [14].

These sensors are correlated with each other [4], [15]. For
example, there are correlations between GPS-derived speed,
vehicle speed, acceleration pedal, accelerometer, brake volt-
age, and engine speed. Pressing brake will reduce engine RPM,
GPS-derived speed, and vehicle speed. Moreover, the latter
two types of speed have to be close to each other. Similarly,
a resembling observation can be found when pressing the
acceleration pedal.

B. Motivation

There are two challenges to be solved when processing the
correlated data. Firstly, it is difficult to find a closed-form
expression of the relationship. For instance, the authors in
[15] identify a pairwise correlation between vehicle sensors as
above. However, the relationship among these sensors shows a
transitive chain manner rather than just pairwise. Additionally,
the relationship can be linear or non-linear, related to more or
fewer types of sensors.

Secondly, the labeled anomalous data is not enough for
training. On the one hand, the occurrence of sensor attacks
is rare in the past since vehicles at that time are regarded as

TABLE I
SENSOR DATA CONSIDERED IN THIS PAPER. SOME ABBREVIATIONS: ASR

= ACCELERATION SLIP REGULATION, ACC = ACCELERATION, BRK =
BRAKE, MFS = MISFIRING SYSTEM, TRQ = TORQUE, FL = FRONT LEFT,
FR = FRONT RIGHT, RL = REAR LEFT, RR = REAR RIGHT, G = GRAVITY.

Sensors on CAN bus GPS Sensors
ASR Acceleration
AccPedal Current sec
AirIntakeTemperature Direction
AmbientTemperature Distance
BoostPressure GPS fix quality
BrkVoltage Velocity
EngineSpeed CAN IMU Sensors
EngineTemperature Accelerometer X
Kickdown Accelerometer Y
MFS Tip Down Accelerometer Z
MFS Tip Up Body acceleration X
SteerAngle Body acceleration Y
Trq FrictionLoss Body acceleration Z
Trq Indicated G force
VehicleSpeed Magnetometer X
WheelSpeed FL Magnetometer Y
WheelSpeed FR Magnetometer Z
WheelSpeed RL Velocity X
WheelSpeed RR Velocity Y
Yawrate Velocity Z

a relatively closed system. On the other hand, most publicly
available datasets only contain normal sensor data. Further,
even if there were a dataset with labeled anomalous data, it
would be treated as a biased dataset, because it is impossible
to have a dataset that can cover all possible types of sensor
attacks. Furthermore, classical clustering algorithms may not
have good performance either [15].

In order to address those challenges, we propose an ap-
proach that aims to learn consistent patterns solely based on
sensor data in normal states and utilizes them as the nominal
behavior for the detection.

C. Threat Model

The threat model used in this paper is as follows. First,
the attacker can maliciously alter sensors and control their
measurements given to the controller. He or she cannot com-
promise all sensors and thus is unable to mimic the relationship
among them. Second, the training dataset is trustful, i.e.,
the attacker cannot access or modify the training dataset.
Third, the attacker does not know how to corrupt the anomaly
detector, such as injecting malicious code or changing it.

III. THE DEEP AUTOENCODER BASED ANOMALY
DETECTION METHOD

In this section, we first give a brief introduction about
a deep-autoencoder, then present how to train the encoder
and decoder to learn consistent patterns among sensor data,
and finally define the reconstruction error based threshold for
detection.

A. Brief introduction of deep autoencoder

As mentioned, an autoencoder is a type of neural network
which consists of two main parts: the encoder and the decoder.



The layers of a typical autoencoder are all fully-connected.
The structure of a fully-connected deep autoencoder is as
shown in Fig.1. Both encoder and decoder have multiple
hidden layers, which form a deep neural network. The encoder
will compress the input features into a sample of the ’encoded
distributions’, which is also considered as the compressed
code. Then the sample from encoded distributions is passed
to the decoder for reconstructing the input features as much
as possible. The original function of an autoencoder is to
extract the pattern of the training dataset. The thought of the
encoder and decoder is pretty straightforward. If the decoder
can reconstruct the input with the encoded code generated by
encoder, the lower dimension encoded code should contain the
main features or correlations of the input. It is the reason why
the autoencoder is usually considered as feature extraction or
pattern recognition algorithm.

Fig. 1. The Structure of a Deep Autoencoder Neural Network for Anomaly
Detection

The objective of such a neural network is to minimize the
difference between input data and output data. In simple terms,
what data we put into the input layer, we want to obtain
the same data from the output layer. The characteristic of
deep autoencoder makes it a feasible approach for anomaly
detection. Considering the difficulty of defining various types
of attacks(anomalous data) on-vehicle sensors, we can employ
a deep autoencoder to learn the modes of normal vehicle
sensors data. Those modes reveal the correlations between
the different sensors. Moreover, any data which does not
follow these patterns will result in a larger reconstruction error
than normal sensors data. These data should be considered as
anomalies.

B. Training Encoder and Decoder

For the input layer, the input set of sensors data is denoted
by X = [x1, x2, · · · , xd], where each xi in X represents
one vector of features. Then the encoder part of an deep
autoencoder network is described as follows

C = σL(W
L · · ·σ2(W 2σ1(W

1X+ b1)+ b2)+ · · ·+ bL) (1)

where the output C is the compressed encoded code, L denotes
the number of layers of the encoder, Xi and bi are the weights
matrix and the bias vector in layer i respectively, and σ is a

nonlinear activation function, which can be different in each
layer i. The following activation function, tanh and relu, are
used in our approach.

tanh(x) =
ex − e−x

ex + e−x
(2)

relu(x) = x+ = max(0, x) (3)

In our vehicle sensor anomaly detection scenario, considering
the transitive correlations between different sensors, nonlinear
activation functions are able to achieve a better performance.

The compressed encoded code C is used as the input of the
decoder defined below.

X̂ = σM (WM · · ·σ2(W 2σ1(W
1C+b1)+b2)+· · ·+bM ) (4)

where X̂ is the reconstructed features that X̂ =
[x̂1, x̂2, · · · , x̂d]. M is the number of layers of the Decoder.
Especially, it’s not necessary that M = L. Other symbols are
similar with the symbols in Eqn.(1). W j denotes the weights
matrix and bj denotes the bias vector of the layer j in Decoder,
where j ≤M .

We use Zi to represent the size of layer i of the encoder
and Zj to represent the size of layer j of the decoder. For an
autoencoder, Zi+1 is not required to be less than Zi and Zj+1

is also not have to be larger than Zj . Such an autoencoder is
called a sparse autoencoder. However, in our deep autoencoder
approach, the detection model gains better performance when
we define as follows

Zi+1 ≤ Zi i ∈ [1, · · · , L] (5)

Zj+1 ≥ Zj j ∈ [1, · · · ,M ] (6)

The batch gradient descent method is the regular algorithm
to train the deep autoencoder. With a pair of input and
reconstructed output (X, X̂), we use Eqn.(7) and (8) to update
the parameters of our model.

W i =W i − α5W i DMSE/MSLE/MAE(X, X̂) (7)

bi = bi − α5bi DMSE/MSLE/MAE(X, X̂) (8)

where DMSE/MSLE/MAE is the reconstruction error function
we will discuss in next subsection and α represent the learning
rate in a batch size. The size of X and X̂ is decided by the
batch size. The weight W and bias b are updated for every
training batch.

C. Reconstruction Error Measurements

For the input X = [x1, x2, · · · , xd] and the reconstructed
output X̂ = [x̂1, x̂2, · · · , x̂d], we need to give the D(X, X̂)
to evaluate the reconstruction error which is also called loss
in deep neural network training process.

We can use three different evaluation methods that are
defined as follows

DMSE(X, X̂) =
1

d

d∑
i=1

(xi − x̂i)2 (9)



DMSLE(X, X̂) =
1

d

d∑
i=1

(log(xi + 1)− log(x̂i + 1))2 (10)

DMAE(X, X̂) =
1

d

d∑
i=1

|xi − x̂i| (11)

where DMSE(X, X̂) is the Mean Squared Error for a
predictor. It measures the average of the squares of the
errors between the input and output. DMSLE(X, X̂) is the
Mean Square Logarithmic Error and DMAE(X, X̂) is the
Mean Absolute Error. These three various functions shows
different performance on training results. We will evaluate
them in our experiment section.

The target of the autoencoder training process is to minimize
the D(X, X̂). We wish the autoencoder can reconstruct the
input features as much as possible. However, usually we
cannot get the totally same input. The reconstruction error
always exists for each X .

D. Threshold Estimation

In a real-world driving scenario, because the environment
and other extra influencing factors can slightly change the
correlations between the sensors, the patterns of vehicle sensor
data are not always completely stable. Thus, after learned the
normal sensor data modes, the well-trained autoencoder should
give a range for evaluating the reconstruction error value of
normal data. If the test cases have the reconstruction error that
beyond this range, the data of the test case should be detected
as anomalies. We defined a threshold as the upper bound of
the range. The threshold T can be obtained as follows

S =

∑n
i=1Di

n
(12)

T = S + 2

√∑n
i=1(Di − S)2

n
(13)

where the Di denotes the reconstruction error of Xi in training
set. S is the mean of D1, D2, · · · , Dn.

Meanwhile, the other goal is to minimize the range of Di.
This range reflects how well does the deep autoencoder learn
the modes. A relatively small and stable range can provide a
meaningful threshold and be sensitive to anomalous behaviors.
For a test input Xtest and its output X̂test, if the reconstruction
error Dtest is larger than threshold T , the vehicle control
system should raise an alert and take corresponding actions.

The training results vary for different training approaches. It
depends on the setting of hyperparameters, such as the learning
rate, the number of hidden layers, the activation function, the
loss function, and the batch size. An appropriate setting of
hyperparameters can achieve better performance and faster
learning speed.

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate the effectiveness of our
method based on a real-world vehicle sensor data set and
detailed result analysis.

A. Experimental setup

We conduct several experiments to demonstrate the per-
formance of our deep autoencoder based anomaly detection
approach. The dataset used here is from the AEGIS Big
Data Project for public safety and personal security [14].
This dataset includes 68 types of CAN bus sensor data, 10
types of GPS sensor data, and 24 types of IMU sensor data.
Furthermore, the sampling frequency of data is 20Hz. Our
training set contains 180000 entries of data in a continuous
driving trip of 2.5 hours. All data in the training set are
collected when the vehicle operates in normal states.

The types of data used in our experiments are shown in
Table I. We drop some sensor data (e.g., temperature) because
these sensors are obviously irrelevant in our evaluation. That
is, these features in Table I are filtered from the AEGIS dataset
based on whether they are correlated. The data from vehicle
sensors need to be standardized before we can use it directly.
Standardizing data value in range [0, 1] helps the training
process. Meanwhile, even though correlations between these
vehicle sensors are proved, their contributions to the detection
model are not the same. The sensors which have stronger
correlations are more sensitive to abnormal data. The system
should have less tolerance for anomalies from these sensors.
We demonstrate this in one of our experiments.

The experimental autoencoder network includes a 4-layers
encoder and a 4-layers decoder. The size of a layer in the
decoder is 3/4 of its previous layer. Moreover, the size of
a later in the decoder is 4/3 of its previous layer. The
dimension of the input layer and the output layer are both
40. We construct our autoencoder neural network based on
the Tensorflow framework and the Keras interface. We also
use the NVIDIA CUDA with a GPU to accelerate the training
process.

We build three anomaly detection model with the AEGIS
dataset, based on three different measures of reconstruction
error, MSE, MSLE, and MAE. MSE is mean squared error
given in Eqn. (9). MSLE is mean square logarithmic error
given in Eqn. (10). MAE is mean absolute error given in
Eqn. (11). To build the test set, we select 10,000 entries
of normal driving data, and randomly insert 25 entries of
anomalous data to to replace the original entries each time.
Thus, the test set contains 25 anomalous data in a 500 seconds
time series with a total of 10000 entries of data.

B. Experimental results

The results are shown in Fig.2, Fig.3 and Fig.4. We find that
both MSE and MSLE methods perform well in detecting the
inserted anomalies. Twenty-five anomalous data all receive the
reconstruction error value that exceeds the threshold, and al-
most all the normal driving behaviors are below the threshold.
The recognition effect of both methods is good. Meanwhile,
their learning speed and effect are also satisfactory enough.
The deep autoencoder based on both methods decreased the
average reconstruction error to a stable range in 50 training
epochs with the batch size 64.



Fig. 2. Test result of detection for vehicles sensors data with the MSE
measure. Test set contains 25 anomalous data in a 500 seconds time series
with a total of 10,000 entries of data.

Fig. 3. Test result of detection for vehicles sensors data with the MSLE
measure.Test set contains 25 anomalous data in a 500 seconds time series
with a total of 10,000 entries of data.

However, the MAE based model is hard to converge even
after 200 training epochs, while the MSE and MSLE only took
100 training epochs to achieve the current performance. The
reconstruction error of MAE based method is unstable and has
a very large fluctuation range, as we can see in Fig.4. Five
of the obvious anomalous behaviors are falsely detected as
normal sensors behaviors. Furthermore, surprisingly, a large
part of normal data around the point index 2000 received a
high reconstruction error. Such a misreport will affect the
normal operation of the system and significantly reduce the
efficiency of the vehicle control system.

We observed that for the normal data around the point index
2000, all three models have made apparent changes to its
reconstruct error. We analyzed the data carefully and found this
continuous data was generated during the uphill driving phase
of the vehicle. As we discussed in section 4, the environment
and other extra influencing factors can slightly change the
correlations between the sensors. It makes the data with such

Fig. 4. Test result of detection for vehicles sensors data with the MAE
measure.Test set contains 25 anomalous data in a 500 seconds time series
with a total of 10,000 entries of data.

Fig. 5. Distribution of reconstruction error of MSLE based Deep Autoencoder
with various testing samples. Each sample has a continuous anomalous data
injection on a different sensor. Anomaly 1 - anomalous vehicle speed data,
Anomaly 2 - anomalous accPedal data, Anomaly 3 - anomalous vehicle
acceleration data, and Anomaly 4 - anomalous engine speed data.

correlation different from the primary nominal mode that the
model has learned. In other words, such a correlation was
not learned by the autoencoder. This happens when we lack
relevant training data in that uphill context. They are rarely
distributed in the training set. However, as a part of normal
vehicle travel, uphill or downhill conditions should also be
considered as nominal mode. There may be multiple nominal
modes in the training set. Although we don’t need to label data
for different nominal modes, it is also necessary to ensure its
reasonable distribution.

Compare with the other two methods, the Deep Autoencoder
with MSLE achieves the best performance. We believe the
reason is that MLSE only cares about the percentual difference
between the true and the predicted value. Considering the
different sensor data have a different standard of measurement,
MSLE can reduce the influence of such diversity and minimize



the range of reconstruction error. So It makes sense that
MSLE achieves the best performance. We use the MSLE based
detection model to do the next experiment.

Another experiment we did is to display the detection
sensitivity to anomalous data of different sensors. The sensors
which have stronger correlations are more sensitive to abnor-
mal data. We used data of the same degree of abnormality.
Each time the anomalous data will be inserted to one specified
sensor in a 50 seconds time series. Besides, the detection
model shows different sensitivity to each of them. The values
of their reconstruction error are shown in Fig.5

The four types of anomaly data are from the vehicle
speed sensor, vehicle acceleration sensor, accPedal sensor, and
engine speed sensor. The detection model is more sensitive to
anomalies from the vehicle speed sensor and engine speed
sensor. We believe that they have a higher correlation with
other sensors. Ganesan’s work [15] also proves this. Because
of the strength of the correlations, different sensors data will
receive their reconstruction error at different levels. The data
from sensors that are highly correlated with others will receive
higher reconstruction errors even when they have the same
degree of anomalies.

V. RELATED WORK

This section briefly discusses the closely-related work to this
paper. The authors in [1], [16] discover security vulnerabilities
of the CAN bus that potentially are used by attackers to
compromise CAN bus sensor data. To address these vul-
nerabilities, the authors in [17] propose a frequency-based
anomaly detection approach for disruptions on the CAN bus.
The main idea is to learn the arrival frequency of packets on
the bus and carry out detection based on that most normal
packets arrive at a strict frequency. The authors in [15] utilize
the pairwise correlation between vehicle sensors to detect
anomalous behaviors caused by sensor faults or attacks. The
authors in [18] presents a spatiotemporal graphical modeling
approach to detect anomalies for a heating system. The authors
in [13] use an autoencoder to detect anomalies in high-
performance computing systems.

Different from them, this paper is motivated by the in-
herent senor redundancy and proposes a deep autoencoder
based anomaly detection method for autonomous vehicles.
The method only leverages normal sensor data and performs
a system-wide anomaly detection.

VI. CONCLUSION

With the popularity of autonomous driving, the safety issues
of vehicle control systems are also increasing. Anomaly de-
tection can improve the safety and resilience of such vehicles.
This paper studies an anomaly detection to validate sensor data
before the controller acts on them. In the absence of sufficient
labeled data for all possible anomalies, it is difficult to train
enough accurate detection model. Motivated by the inherent
redundancy among heterogeneous sensors, we propose a deep
autoencoder based detector. The detector learns consistency
among sensor data in the normal mode and uses it to identify

anomalous behaviors. The proposed method is independent of
anomalous data for training and the calculation of pairwise
correlation among senors. We use a real-world dataset to
demonstrate the feasibility of our method. For future work,
we will involve more techniques about feature extraction in
our current solution framework.
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