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Abstract—Hostility is a complex trait with emotional, cognitive,
and behavioral components. Hostility identification in conversa-
tional or transactional scenarios can benefit healthcare systems
by, for example, predicting cardiovascular disease risks. While
conventional hostility assessment relies on interviews, training
proficient interviewers and mitigating biases pose significant
challenges. In response, this study introduces the GMGF-MIL
method to pioneer automatic multi-modal hostility detection in a
structured interview. This approach utilizes recurrent neural net-
works to capture conversational context while integrating a graph
neural network-based technique to merge acoustic and textual
data. Furthermore, attention-based multiple-instance learning
pooling is employed to aggregate utterance-level information.
Notably, this is the first paper to introduce a novel multi-modal
automated conversational hostility assessment approach, filling a
notable gap in existing resources. Our evaluations showcase the
efficacy of the GMGF-MIL method, achieving an accuracy of
78% in distinguishing between high- and low-hostile individuals.

Index Terms—Hostility Detection, Multi-Modal Fusion, Acous-
tic Analysis, Text Analysis, Deep Learning

I. INTRODUCTION

Behavioral hostility refers to an antagonistic interpersonal
attitude comprising cognitive, affective, and behavioral ele-
ments [1]. The identification of individuals with high hostility
holds significant implications in healthcare, notably in patient-
provider interactions [2], [3], mental health assessments [4]–
[6], and cardiovascular disease (CVD) risk [7]–[10]. Hostility
assessment typically involves self-report evaluations [11] and
interview-based methods [12]. Due to the transactional nature
of hostility, the interview method offers advantages by assess-
ing both recalled instances of hostile behaviors and real-time
hostile behaviors in a pseudo-naturalistic environment [13].
Since hostility often emerges in social interactions due to vig-
ilance for others’ hostility and perceptions of threat from the
interviewer, the Structured Type A Behavioral Interview [14],
[15] is a gold standard for assessing transactional hostility,
which has been linked to heart diseases [16], [17].

During interviews, hostility is often expressed through
negative words and aggressive tones, making both textual
transcriptions and audio signals valuable for detection. While
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interview-based approaches are more reliable, they face chal-
lenges such as the need for experienced interviewers, potential
interviewer bias, and the time-consuming nature of interview
administration and coding. To overcome the limitations of
traditional interview-based methods, this study develops an
automated approach to identify hostility based on conversa-
tional utterances. This makes transactional hostility screening
automated, scalable, and cost-effective (e.g., using a voice
agent to replace interviewers), enabling efficient assessment
of a non-traditional CVD risk factor. Here, the term “utter-
ance” is used to describe spoken statement information, thus
comprising both transcribed text and acoustic modalities.

Compared to the existing works that primarily focus on
detecting hostile or hateful contents [18]–[20] or predicting
stable personality traits [21]–[23], which are not established
as proxies of transactional hostility in literature, this paper is
the first to explore how to distinguish individuals high vs. low
transactional hostility by integrating text and audio throughout
the conversation of gold standard Structured Type A Interview
with designed questions.

To address the research problem, this paper introduces the
GMGF-MIL, a novel neural network model comprising three
key components: (1) bi-directional gated units (BiGRU) serv-
ing as contextual information encoders. Here, the “context”
of an utterance encompasses the target individual’s (whose
hostility is being assessed) acoustic style, choice of words,
and affective states of the individuals (i.e., interviewer and
interviewee) involved in the utterance; (2) a graph neural
network-based fusion mechanism for inter- and intra-modality
information integration; and (3) attention-based multiple in-
stance learning pooling layers designed to effectively identify
and aggregate important information from multiple utterances.
We summarize the key contributions as follows:

• This study pioneers the automatic identification of in-
dividuals with high vs. low transactional hostility in
conversational interviews, utilizing speech acoustic and
transcription data. By leveraging the presented approach
and replacing structured interview questions with a voice
agent, the interview-based hostility detection process can
be fully automated, overcoming the above-discussed lim-
itations of human interviewers.

• This study introduces GMGF-MIL, a method that can
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track contexts in conversation, integrate different modal-
ities, and effectively aggregate information from utter-
ances with varying importance in prediction from con-
versation comprising several multi-person utterances. The
novelty comes from formulating the classification as a
multiple instance learning (MIL) problem. MIL enhances
the significance of utterances closely associated with
hostility, thus amplifying their influence in the final
embedding used for classification.

• The paper offers insights and interpretations regarding the
questions/topics that elicit distinguishable patterns among
individuals with low vs. high hostility by visualizing
the MIL weights, which can be advantageous for future
studies aiming to assess hostility from conversations.

II. RELATED WORK

This section first discusses the transactional model of
hostility, differentiating our work from studies focused on
identifying hostile content and predicting personality traits.
Then, it introduces state-of-the-art (SOTA) approaches for the
related task of emotion recognition in conversations.

A. Transaction Model of Hostility

The transactional model of hostility explains how hos-
tile individuals interpret and react to social interactions [7],
[13]. It suggests that hostility involves more than just re-
sponding to daily stressors with increased and prolonged
cardiovascular and neuroendocrine reactivity; Instead, hostile
individuals, through their thoughts and actions, create more
frequent, severe, and enduring contacts with stressors, leading
to cardiovascular reactivity within the context of interpersonal
interactions [24], [25].

a) Transactional Hostility vs. Content-Based Hostility:
Hostile, toxic, and hateful speech or posts are reflections
of hostility [26]. Studies have aimed to detect hostile or
hateful content across various mediums, including images [27],
[28], textual posts [18], [19], [29], and videos [20], [30] on
social media platforms. However, these efforts predominantly
focus on content analysis and provide limited insights into
individuals’ hostility in a transactional environment and its
health implications.

b) Transactional Hostility vs. Big 5 Personality Traits:
The Big Five Personality Traits include Open-mindedness,
Conscientiousness, Extraversion, Agreeableness, and Neuroti-
cism, describing individuals’ stable patterns of behavior, cog-
nition, and emotion across various contexts [31]. Studies have
explored automatic personality recognition based on these
traits using multiple modalities from dyadic interactions [21]–
[23], [32], [33]. While hostility is likely related to the Big
Five model, the transactional model of hostility specifically
examines the dynamics of hostile responses in social interac-
tions, such as in structured Type A interviews. In contrast, the
Big Five model offers a broader overview of stable personality
characteristics across various contexts.

Compared to content-based hostility detection and person-
ality prediction, this study focuses on identifying transactional

hostility in structured interview conversations. By developing
an automatic detection method in this setting, we aim to pave
the way for future research in this field.

B. Multi-Modal Emotion Recognition in Conversation

Studies on emotion recognition in conversation (ERC) com-
monly integrate information from multiple modalities, such
as text, audio, video, etc., to extract complementary semantic
information [34]. The common approaches for modality in-
tegration include early fusion that concatenates initial feature
vectors from various modalities [35], [36], late fusion that con-
catenates embeddings of different modalities generated from
independent embedding generating neural networks [37], [38],
and utterance-level interaction fusion that explicitly models the
relationships between modalities [39]–[41].

Acknowledging the sequential nature of conversational ut-
terances, studies underscore the mutual influence of utterance
contexts [42], [43]. Models capable of encoding sequential
information, such as recurrent neural networks and transform-
ers, have been widely employed [44]–[46]. Moreover, graph
neural networks have emerged as promising tools for encoding
speaker interactions and sentiment implications within and
across modalities [47]–[54].

While emotion is a component of hostility, this study differs
from ERC with a distinct scenario. ERC involves detecting the
emotion conveyed in each utterance, whereas our objective
is to detect individuals with high hostility from others based
on patterns exhibited across all utterances within an interview
conversation.

III. PROBLEM FORMULATION AND DATA

There are two individuals in an interview: the interviewer,
who poses questions, and the interviewee, who responds.
The i-th utterance is denoted as ui and incorporates two
modalities - transcribed text and acoustic signal. The feature
representation of an utterance is expressed as ui = {ua

i , u
t
i},

where ua
i and ut

i represent the feature vectors of the acoustic
and textual modalities, respectively. We arrange the utterances
in the temporal order they are spoken, modeling the interview
conversation as U = [u1, u2, . . . , un], where n is the number
of utterances. An utterance is spoken either by the interviewer
or the interviewee, therefore, we denote that

UQ = {ui|ui ∈ U, ui is spoken by the interviewer} (1)
UA = {uj |uj ∈ U, uj is spoken by the interviewee} (2)

where UQ and UA are the sets of utterances from the inter-
viewer and interviewee respectively.

The target of this study is to infer whether the interviewee
exhibits high hostility (positive class, i.e., class 1) or low
hostility (negative class, i.e., class 0) based on the utterances
U exchanged during the conversation.

A. Dataset Overview

To the best of our knowledge, there is no large public
multi-modal dataset that contains the label of hostility measure
for the individual in interviews or conversations. Thus, we
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processed a dataset comprising more than 3000 utterances
from 91 interview conversations that occurred as part of
the Multiple Risk Factor Intervention Trial (MRFIT) [55].
The interview was designed by Chesney et al. [15], and the
interviewee’s hostile behaviors were assessed using the Inter-
personal Hostility Assessment Technique (IHAT) [12]. IHAT
evaluates hostility by assessing the interviewee’s irritated
tones, impatience, and implicit or explicit responses indicating
disdain for the questions asked, among other indicators [12],
[15].

Some questions (along with their follow-up questions) in the
interview intentionally pose challenges or interruptions, which
are more likely to elicit hostile reactions from the interviewee.
We selected a total of 12 questions-answers (suggested as
highly effective in triggering hostility by [12], [15]), each
of which may be followed by several additional questions-
answers. These questions are arranged in the temporal order
they are asked during the interview, as presented in Table I.

TABLE I
A LIST OF SELECTED INTERVIEW QUESTIONS. The interviewers are trained
to ask the questions in a standardized manner to present the subject with a

stimulus that will educe hostile behavior if it is part of the subject’s
behavioral repertoire. The capitalized words are emphasized with a crisp,

abrupt, staccato style [15].

1. Are you SATISFIED with your job level? Does your job carry
HEAVY responsibility?
2. Are there times that you feel RUSHED or under PRESSURE? When
you ARE under PRESSURE does it bother you?
3. How would your WIFE (CLOSE FRIEND) describe you in those
terms - as HARD-DRIVING and AMBITIOUS or as relaxed and easy-
going?
4. When you are ANGRY or UPSET, do people around you know about
it? How do you show it?
5. When you play competitive games with children, do you ALWAYS
let them WIN on PURPOSE? Why or why not?
6. If a car in your lane is going FAR TOO SLOWLY for you, would
you MUTTER and COMPLAIN to yourself? What do you do about it?
7. Most people who work have to get up fairly early in the morning, in
your particular case, uh-what-time-uh-do-you-uh, ordinarily uh-uh-uh-
get up?
8. If you make a DATE with someone for, oh, two o’clock in the
afternoon, would you BE THERE on TIME? If you are kept waiting,
do you RESENT it?
9. If you see someone doing a job rather SLOWLY and you KNOW you
could do it faster and better yourself, does it make you RESTLESS to
watch them? Would you be tempted to STEP IN AND DO IT yourself?
10. What IRRITATES you most about your work, or the people with
whom you work?
11. When you go out in the evening to a restaurant and you find eight
or ten people WAITING AHEAD OF YOU for a table, will you wait?
12. How do you feel about WAITING in lines - bank lines, supermarket
lines?

Typically, a higher IHAT score indicates greater hostility.
To set a threshold for positive and negative classes and avoid
bias in our small subset, we use the median IHAT score (0.06)
reported by a previous study [8] with a larger population of
518 individuals. This categorizes the interviewees into high-
(positive) and low-hostile (negative) classes, comprising 46
and 45 individuals, respectively, as depicted in Fig. 1.

Fig. 1. Each point in this figure represents one interviewee and his/her IHAT
rating in our data. The red dashed line is the median score (0.06) reported
in [8]; we use it to assign hostility labels to interviewees. The ones above
the red line are high-hostile (positive), while the ones below the red line are
low-hostile (negative).

B. Data Processing and Feature Extraction

The raw acoustic data for each interview is provided as a
single .wav file, and the time stamps for individual utterances
are unavailable. To identify the specific questions outlined
in Table I, we employed the Google Speech-to-Text service
[56] to perform speaker diarization on each interview record-
ing, thereby segmenting the entire conversation into multiple
smaller clips. Subsequently, the transcript for each clip was
generated using the same API. By comparing the automatically
generated transcripts with the accurate transcripts, we ex-
tracted the audio clips containing the utterances corresponding
to the questions and answers listed in Table I from all interview
recordings. Further, the acoustic data is paired with the textual
data.

As described in Section III, each utterance is represented as
ui = {ua

i , u
t
i}, comprising acoustic and textual information.

Hostility is expressed through both verbal and paraverbal com-
ponents (involving words and vocal stylistics) [15], sharing
connections with language and vocal expressions of sentiment
and emotion [57]. Following the related work on ERC [52],
[58], [59], we employed pre-trained FastText word embed-
dings [59] and OpenSmile toolkit [60] with IS10 configuration
[61] to represent the textual (ut

i) and acoustic (ua
i ) modalities.

IV. METHODOLOGY

A. Challenges and Design Choices

This section rationalizes our design choices for detecting
hostility in conversations, which includes contextual infor-
mation encoding, modality fusion, and pooling of utterance
embeddings.

1) Encoding of Contextual Information.: The first challenge
is “How to track the contexts in the conversation?”

In conversations, the interpretation of an utterance can be
influenced by its surrounding context [62]. Hostile behavior
often emerges in social interactions, such as through the vocal
style and choice of words employed by the interviewee in
response to the interviewer’s questions. As an individual’s
hostility can be influenced by others’ behavior, the affective in-
formation of both individuals involved in the respective context
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(i.e., utterance) is crucial for assessing hostility. Therefore, it is
essential to implement a mechanism capable of capturing the
contextual information and corresponding speakers’ affective
states within the interview conversation. Thus, we utilize the
one bi-directional gated unit (BiGRU), which is known for its
high capability in interpreting sequential data [63] to encode
the sequential contextual information from textual modal-
ity. Compared to other sequential models like Long Short-
Term Memory (LSTM) networks and transformers, GRU has
fewer parameters, making it a more suitable choice for our
small dataset. Furthermore, another shared BiGRU network
is employed to track the speakers’ states for better affective
information detection affiliated with the respective context.
The details are discussed in Section IV-B1.

2) Fusion of Acoustic and Textual Modalities.: The second
challenge is “How to effectively fuse the two modalities?”

Text and audio modalities exhibit distinct patterns yet are
inherently interconnected. Integrating complementary seman-
tic information across modalities can enhance the model’s
understanding capability [64]–[66]. Given the extensive studies
and promising results of graph-based multi-modal fusion tech-
niques in emotion and sentiment analysis during conversations
[49], [51]–[54], [67], we opt for a graph-based fusion approach
to merge textual and acoustic information. The details about
graph construction and fusion are given in Section IV-B2.

3) Aggregation of Utterances via Pooling.: The third chal-
lenge is “How to consolidate information from a fluctuating
number of utterances, each with differing degrees of impor-
tance, to infer hostility?”

This study targets identifying the interviewee’s high vs.
low hostility based on multiple utterances, and the number of
utterances varies among interviews. Additionally, as outlined
in prior work, not all questions are equally effective in eliciting
hostility patterns [12]. Therefore, employing a simple mean
pooling over the embeddings of all utterances could dimin-
ish the representation capability of those utterances that are
closely associated with hostility. To enhance the aggregation
of information from multiple utterances regardless of the
utterance number, we formulate hostility identification into a
multiple instance learning (MIL) problem. By deploying the
attention-based MIL pooling method [68], the varying number
of utterances can be handled, and the information from the
most indicative utterances can be amplified. Further discussion
is provided in Section IV-B3.

B. GMGF-MIL Approach

To address the challenges, we design GRU-based Multi-
modal dynamic Graph Fusion MIL (GMGF-MIL) approach.
Different modules of GMGF-MIL are discussed in the fol-
lowing sections. Fig 2 shows the overall architecture of the
method.

1) Contextual Information Encoding with BiGRU: Consid-
ering sentences from speech transcriptions are more structured
and contain richer contextual information than audio data, we
only encode contexts within the textual modality. This ap-
proach allows for a more nuanced understanding of utterances

Fig. 2. GMGF-MIL Model Architecture

in linguistics. Given a bi-directional gated unit (BiGRUc) for
context tracking, the context embedding cti for ut

i is computed
as:

cti, h
c
i = BiGRU c(u

t
i, h

c
i−1) (3)

where hc
i is the hidden state. Additionally, a prior study

[44] indicates that the individual speakers’ states during a
conversation are informative for affect information detection.
Thus, we use a shared BiGRUs to encode the speakers’ states
from both modalities:

smi,Q, h
s
i = BiGRUs(u

m
i , hs

i−1),m ∈ {a, t}, ui ∈ UQ (4)

smj,A, h
s
j = BiGRUs(u

m
j , hs

j−1),m ∈ {a, t}, uj ∈ UA (5)

where si,Q and sj,A are the speaker state embedding for the
interviewer and interviewee, respectively. Based on the context
embedding and speaker state embedding, we define:

xt
i = cti + sti xa

i = ua
i + sai (6)

Both the new textual (xt
i) and acoustic (xa

i ) embeddings com-
prise each speaker’s affective state information from respective
modalities, where xt

i comprises contextual information and xa
i

comprises acoustic signal information. The next section will
discuss how we perform modality fusion on xt

i and xa
i .

2) Graph-based Dynamic Fusion for Multi-modal Inte-
gration: Integration of multi-modality has two components
discussed below.

Graph Construction: Following the studies that use the
graph-based method to model utterances in conversation [51],
[52], [54], [58], we construct an undirected graph to fuse the
acoustic (xa

i ) and textual (xt
i) embeddings.

To build a graph of a conversation, each utterance is
represented by two nodes: one textual node xt

i and one acoustic
node xa

i . Therefore, for a conversation with n utterances, there
are a total of 2n nodes. We follow two rules to connect nodes:
(1) two nodes from the same modality are connected, i.e.,
xt
i and xt

j , enhancing the intra-modality context information;
(2) two nodes of different modalities from the same utterance
are connected, i.e., xa

i and xt
i, enhancing the inter-modality

complementarity. The weights of the edges are determined by
the cosine similarity between the two nodes [69]:

Aij = 1− arccos(sim(ni, nj))

π
(7)
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Dynamic Fusion with Graph Convolution Based on the
graph built in the previous section, we apply the dynamic
fusion module designed by [52] to perform the inter- and
intra-modality information fusion using a K-layer gating graph
convolution. The graph convolution for the k-th layer is
defined as [70]:

Hk = σ(((1−α)P̃Hk−1+αH0)((1−βk−1)In+βk−1W
k−1))

(8)
where P̃ = D̃−1/2ÃD̃−1/2 is the graph convolution matrix
with the renormalization trick [71]. σ denotes the ReLU
activation function and W k is the weight matrix of the k-
th layer. H0 is the initial representation of nodes (i.e., xt

i

and xi
a from Equation (6)). In is an identity mapping matrix.

α is a hyper-parameter that ensures the final representation
of each node consists of a fraction of its initial features;
βk = log(γk +1) with the hyper-parameter γ ensures the decay
of the weight matrix adaptively increases as the number of
layers increases [70].

On top of the graph convolutional layer, a gating mechanism
is applied to help the model learn intrinsic sequential patterns
of contextual information in different semantic spaces by
controlling how many contexts are to be stored and remov-
ing redundant information [52], [72]. An LSTM is used to
implement the gating mechanism, and the initial hidden state
h0 is set to zero. The output of the k-th layer Hk

out is defined
as:

gk, hk = LSTM(Hk, hk−1) (9)

Hk
out = Hk + gk (10)

Fig 3 demonstrates how the graph is constructed and up-
dated using the graph convolutional layers and gating mecha-
nism. After K layers, the embedding of each node is extracted
from HK

out and denoted as eti or eai , corresponding to the tex-
tual and acoustic modality of the i-th utterance, respectively.
By concatenating eti and eai , we obtain the embedding for the
utterance uc

i = [eai , e
t
i], which encapsulates a fusion of inter-

and intra-modality contextual information along with intrinsic
sequential patterns.

3) Attention-based Multiple Instance Learning Pooling:
This section discusses the strategy of aggregating information
from utterance embeddings to assess hostility.

To address the challenge posed by the varying number
of utterances in interview conversations and to focus on the
utterances most relevant to hostility detection, we formulate
the task as a multiple instance learning (MIL) problem. In
a traditional binary supervised learning problem, a classifier
receives an instance x as input and infers a target label
value y. But in the MIL framework, instead of one single
input instance, the classifier receives a bag of instances B =
{x1, ..., xn} and generates an inference for the bag [73].

The MIL paradigm aligns with the structure of our data,
where a conversation consists of multiple utterances, and
hostile behavior may not be consistently displayed throughout
but might be prominent in certain utterances. In the hostility
assessment task, an individual’s hostility is evaluated based

Fig. 3. In the graph, yellow nodes are from acoustic modality while the blue
nodes are from textual modality. xl, xm, xn denote different utterances. The
existence of inter- and intra-modality edges helps better fuse the modalities
as well as context information.

on the overall behaviors during the entire conversation rather
than isolated from each utterance. Hence, we consider each
utterance as an ‘instance’ and the conversation as a ‘bag’.
Particularly, we take the embedding uc

i of each utterance from
the interviewee (i.e., ui ∈ UA) as one instance and generate a
bag representation. Utterances from the interviewer are not
included for two reasons: (1) the hostility detection is for
the interviewee; (2) the interactions between interviewer and
interviewee have already been encoded through contextual
embedding and graph-based fusion.

Then, we apply the embedding-based MIL approach to
aggregate instance-level embeddings. A MIL pooling takes
the embeddings and generates a bag representation z that
is independent of the number of instances in the bag. This
approach generates a joint representation of a bag from the
instances; hence it does not introduce any additional bias to
the bag-level classification [68], [74].

Following the attention-based MIL [68], we generate the
bag representation z using a weighted sum of instance em-
beddings uc

i where a neural network calculates the weights
wi. Additionally, the weights must sum to 1 to be invariant to
the number of instances of a bag. Given a set of m utterance
embeddings [uc

1, u
c
2, ..., u

c
m], the attention-based MIL pooling

generate the bag representation z using the following:

z =
m∑

k=1

wku
c
k (11)

wk =
exp{wT tanh(V (uc

k)
T )}∑m

j=1 exp{wT tanh(V (uc
j)

T )}
(12)

where w and V are learnable network parameters.
Attention-based MIL pooling can model an arbitrary

permutation-invariant weight generation function that assigns
different weights to instances within a bag. Hence, the bag
representation is highly informative and capable of identifying
the key utterances (i.e., instances) indicative of high hostility.
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Finally, the bag-level representation z is passed to some
decision-making linear layers, which generate the log-
likelihoods of the positive and negative labels Y . The network
is trained through backpropagation with a binary negative log-
likelihood loss.

V. EXPERIMENTS

Implementaion Details: Following the related ERC works
[52], [58], [59], we extract utterance-level textual features
using TextCNN [75], and project the raw acoustic features
of an utterance into a lower dimension using linear layers.
The number of layers of graph convolution K is set to 16; in
Equation (8), α and βk is set to 0.2 and log(0.5/k+1), as the
previous studies [52], [70] suggest. In experiments, the dataset
is divided into person-disjoint 5 folds for generalized results;
each fold has a class-balanced testing set with data from 20
interviews. Reported results are averaged over the 5 folds.

The following sections discuss the model’s performance in
classifying high- and low-hostile individuals based on audio
and text inputs.

A. Baselines

Because there is no previous work on multi-modal hostility
assessment during interview conversation, we adapt some
SOTA models designed for multi-modal ERC as the baselines:
(1) BC-LSTM [76] encodes contextual semantic information

using Bi-directional LSTM. Modality fusion is performed
by early concatenation.

(2) EmoCaps [77] utilizes a transformer encoder [78] to
track emotional tendency in conversation. The embed-
dings from various modalities are concatenated with the
original textual feature to make a capsule. Here, the
context modeling is implemented via LSTM.

(3) MM-DFN [52] is one of the SOTA approaches that apply
graph neural networks for multi-modal fusion. It models
the contexts in conversations via GRU.

(4) Trans-MM-DFN is a recent variant of MM-DFN, by
using a transformer encoder to extract contextual infor-
mation instead of GRU, as transformer models have a
better sequential context modeling ability [62].

Notably, the original baseline papers’ approaches perform
inference at the utterance level. In contrast, our task needs
to aggregate information from multiple utterances to infer
hostility. So, we apply mean pooling over the embeddings of
the interviewee’s utterances to generate a final embedding for
individual-level hostility classification.

B. Experimental Results and Analysis

1) Overall Performance: The performance of baselines and
GMGF-MIL is summarized in Table II. Presented evaluation
metrics are: Accuracy, true positive rate (TPR), and true
negative rate (TNR). According to the results, overall, GMGF-
MIL outperforms all baselines. Details are discussed below:

• GMGF-MIL vs. MM-DFN: The results demonstrate that
the GMGF-MIL outperforms the other baseline models
overall. Utilizing attention-based MIL pooling, our model

achieves a 3% improvement in accuracy compared to the
second-best baseline model, MM-DFN which employs
mean pooling. Compared to the mean pooling method,
the MIL pooling method unevenly distributes weights to
utterances according to their importance, demonstrating a
better representation. The interpretation of MIL pooling
is provided in Section V-B2.

• GMGF-MIL vs. BC-LSTM and EmoCaps: Compared to
BC-LSTM and EmoCaps, which utilize simple concate-
nation for multi-modal fusion, GMGF-MIL’s graph-based
methods exhibit higher accuracy. This finding suggests
that graphs offer a more effective multi-modal con-
versational information integration approach capable of
capturing both inter- and intra-modality correlations.

• GMGF-MIL vs. Trans-MM-DFN: Trans-MM-DFN
achieves a lower accuracy compared to MM-DFN
when employing a transformer to extract contextual
information instead of a GRU. This discrepancy may
arise from the increased complexity of the transformer
module, which potentially compromises the model’s
generalization ability. A similar observation is noted in
the ablation of GMGF-MIL, discussed in Section V-C2.

All models demonstrate a higher TNR than TPR, indicating
that classifying low-hostile individuals is generally easier than
classifying high-hostile individuals. This observation could
stem from the data distribution (Fig. 1), where some inter-
viewees with IHAT scores slightly above the threshold are
labeled as hostile (positive). High-hostile individuals situated
near the label boundary pose a challenge for correct classifi-
cation, leading models to produce more false negatives (e.g.,
misclassifying them as low-hostile).

TABLE II
AVERAGE ACCURACY AND STANDARD VARIATION OF DIFFERENT MODELS

ON 5 FOLDS. TRUE POSITIVE RATE (TPR) AND TRUE NEGATIVE RATE
(TNR) INDICATE THE MODELS’ CAPABILITY TO CORRECTLY IDENTIFY

HOSTILE AND NON-HOSTILE INDIVIDUALS, RESPECTIVELY.

Model Accuracy TPR TNR
BC-LSTM 68% (±6.8%) 62% (±22.3%) 74% (±15.0%)
EmoCaps 70% (±7.1%) 66% (±17.4%) 74% (±10.2%)
MM-DFN 75% (±9.3%) 66% (±23.0%) 84% (±15.2%)

Trans-MM-DFN 73% (±5.7%) 70% (±20.0%) 76% (±15.2%)
GMGF-MIL 78% (±9.1%) 74% (±24.1%) 82% (±13.0%)

2) Interpretation of MIL Weights: The MIL weight, de-
noted as wk in Equation (12), assigned to each instance
(i.e., utterance) within a bag (i.e., conversation), indicates the
significance of the instance in influencing the final inference.
This section identifies if certain conversational topics are more
related to hostility identification by visualizing the weights
assigned to each question’s corresponding responses.

On average, interviewees provide approximately 20 utter-
ances in response to the interviewer’s questions listed in Table
I, with 1 to 3 utterances typically allocated to answer each
question. To have better insights into how specific questions
prompt responses from interviewees, which bear important
implications for hostility identification, we record the MIL
weight for each question’s corresponding utterances from
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Fig. 4. MIL weights of interviewee’s responses to each question. If all
utterances were equally important for the final prediction, the weights would
be evenly distributed, as depicted by the yellow baseline. The blue bar
represents the overall average weights of the responses across all individuals;
the orange and gray bars represent the weights of the responses among hostile
and non-hostile individuals, respectively.

interviewees who are correctly classified. The average weight
of the interviewee’s utterance response to each question is
shown in Fig. 4.

Fig. 4 illustrates that the weights assigned to the inter-
viewee’s responses to questions 1, 2, 9, and 11 exceed the
baseline weight, indicating that interviewees are more likely to
exhibit notable high vs. low hostility patterns when answering
these questions. Particularly noteworthy is the observation that
when responding to questions about work pressure (questions
2 and 9), high-hostile individuals exhibit a distinct marker, as
evidenced by the much higher orange bars. Conversely, when
addressing questions related to waiting in lines (questions 11
and 12), low-hostile individuals display a noticeable marker,
perhaps indicating greater patience, as indicated by the ele-
vated gray bar.

This visualization underscores the varying contributions of
different questions to hostility identification, highlighting the
importance for researchers to prioritize certain topics over
others. It suggests potential improvements for the design
of structured interviews in future studies related to hostility
assessment, such as reducing trivial questions and creating a
shorter interview.

C. Ablation Study

1) Comparison between Textual and Acoustic Modalities:
This section investigates how acoustic and textual modality
independently contribute to hostility identification.

In this evaluation, we exclusively utilize either text or
audio as input to infer individual hostility. Consequently, the
inter-modality edges depicted in Fig. 3 are absent, with only
intra-modality relationships incorporated into the graph. We
construct two classifiers employing identical architectures to
classify hostility based on text and audio separately. The
results presented in Table III reveal that the acoustic modality
yields much higher accuracy than the textual modality when
utilized independently. This observation aligns with findings

TABLE III
COMPARISON BETWEEN THE TWO MODALITIES IF USED SOLELY

Modality Audio Only Text Only

Accuracy 72% (± 7.6%) 64% (± 8.2%)

from the study [12], emphasizing the critical role of vocal
stylistics in determining hostile behaviors.

The outcome suggests that hostility detection relies more
heavily on the acoustic modality, contrasting with emotion
detection, where textual modality often holds greater signif-
icance [52], [77]. Comparing these results with Table II, we
observe that by leveraging the graph-based dynamic fusion
mechanism to combine the two modalities, the rich textual
semantics complement affective acoustic features, resulting in
higher accuracy (78% accuracy achieved by our method).

2) Context Extraction Model: We experimented with utiliz-
ing a transformer encoder, known for its efficacy in encoding
sequential data [78], as the contextual information extractor in
our approach. However, the transformer-based model yielded
only an average accuracy of 70%, much lower than the
78% accuracy of our GRU-based model. A similar trend is
evident when comparing MM-DFN and Trans-MM-DFN in
Table II. This discrepancy may stem from the transformer
model’s complexity, which might be excessive for our limited
dataset compared to the GRU model, potentially resulting in
overfitting during model training.

VI. CONCLUSION

This paper introduces GMGF-MIL, a pioneering automatic
approach for distinguishing individuals with high vs. low
transactional hostility from conversational speech, with sig-
nificant applications in healthcare and beyond. GMGF-MIL’s
innovative design captures conversational context, integrates
multiple modalities effectively, and identifies crucial utterances
indicative of hostility, resulting in high efficacy. For the first
time, GMGF-MIL enables unbiased and automated assess-
ment of transactional hostility, making it highly impactful
for practical applications. Additionally, through analysis of
MIL weights of responses to different interview questions,
this study identifies prioritized topics and suggests potential
improvement for designing structured interviews.

ETHICAL IMPACT STATEMENT

It is essential to clarify that our research on classifying
individuals’ hostility levels aims at supporting healthcare ser-
vices through enhancing CVD risk assessments, rather than
passing judgment on any individual’s personality. When using
this tool in a medical setting, it is crucial to avoid making
patients feel blamed or criticized. Practical implementation
needs to frame the assessment of interview behaviors as
reflecting enduring responses, like cardiovascular reactions to
acute psychological stress [24], that are difficult to modify
and yet might affect CVD risk. Given the constraints of our
dataset, it is imperative to validate our methods and findings
on larger samples and diverse demographic groups to ensure
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fairness and reliability. Original interview recordings were
collected by an IRB-approved and already published study, the
Multiple Risk Factor Intervention Trial (MRFIT) [55]. Proper
IRB approval was obtained to get access to the interview audio
recordings that were collected as part of the original study.
While we are unable to publicly share the sensitive raw data,
we will release the processed features and code for reference.

REFERENCES

[1] J. C. Barefoot, “Developments in the measurement of hostility.” 1992.
[2] R. C. Lorenzetti, C. M. Jacques, C. Donovan, S. Cottrell, and J. Buck,

“Managing difficult encounters: understanding physician, patient, and
situational factors,” American Family Physician, vol. 87, no. 6, pp. 419–
425, 2013.

[3] R. L. Street Jr, G. Makoul, N. K. Arora, and R. M. Epstein, “How does
communication heal? pathways linking clinician–patient communication
to health outcomes,” Patient education and counseling, vol. 74, no. 3,
pp. 295–301, 2009.

[4] M. D. Faay, J. Van Os, G. Risk, and O. of Psychosis (GROUP) In-
vestigators, “Aggressive behavior, hostility, and associated care needs in
patients with psychotic disorders: a 6-year follow-up study,” Frontiers
in psychiatry, vol. 10, p. 934, 2020.

[5] S. Wagner, R. Pasca, and J. Crosina, “Hostility in firefighters: Personality
and mental health,” International Journal of Emergency Services, vol. 5,
no. 1, pp. 6–17, 2016.

[6] K. Kendall-Tackett, “Depression, hostility, posttraumatic stress disorder,
and inflammation: The corrosive health effects of negative mental states.”
2010.

[7] T. W. Smith, K. Glazer, J. M. Ruiz, and L. C. Gallo, “Hostility, anger,
aggressiveness, and coronary heart disease: An interpersonal perspective
on personality, emotion, and health,” Journal of personality, vol. 72,
no. 6, pp. 1217–1270, 2004.

[8] K. A. Matthews, B. B. Gump, K. F. Harris, T. L. Haney, and J. C.
Barefoot, “Hostile behaviors predict cardiovascular mortality among
men enrolled in the multiple risk factor intervention trial,” Circulation,
vol. 109, no. 1, pp. 66–70, 2004.

[9] S. Sahoo, S. K. Padhy, B. Padhee, N. Singla, and S. Sarkar, “Role of
personality in cardiovascular diseases: An issue that needs to be focused
too!” Indian heart journal, vol. 70, pp. S471–S477, 2018.

[10] R. B. Shekelle, M. Gale, A. M. Ostfeld, and O. Paul, “Hostility, risk of
coronary heart disease, and mortality,” Psychosomatic medicine, vol. 45,
no. 2, pp. 109–114, 1983.

[11] J. C. Barefoot, K. A. Dodge, B. L. Peterson, W. G. Dahlstrom, and R. B.
Williams Jr, “The cook-medley hostility scale: item content and ability
to predict survival.” Psychosomatic medicine, vol. 51, no. 1, pp. 46–57,
1989.

[12] T. L. Haney, K. E. Maynard, S. J. Houseworth, and L. W. Scherwitz,
“Interpersonal hostility assessment technique: description and validation
against the criterion of coronary artery disease,” Journal of Personality
Assessment, vol. 66, no. 2, pp. 386–401, 1996.

[13] E. J. Vella, T. W. Kamarck, J. D. Flory, and S. Manuck, “Hostile mood
and social strain during daily life: A test of the transactional model,”
Annals of Behavioral medicine, vol. 44, no. 3, pp. 341–352, 2012.

[14] R. B. Williams Jr, T. L. Haney, K. L. Lee, J. A. Blumenthal, R. E.
Whalen et al., “Type a behavior, hostility, and coronary atherosclerosis,”
psychosomatic Medicine, vol. 42, no. 6, pp. 539–549, 1980.

[15] M. A. Chesney, J. R. Eagleston, and R. H. Rosenman, “The type a
structured interview: A behavioral assessment in the rough,” Journal of
Behavioral Assessment, vol. 2, pp. 255–272, 1980.

[16] J. Suls and G. S. Sanders, “Why do some behavioral styles place people
at coronary risk?” in In search of coronary-prone behavior. Psychology
Press, 2013, pp. 1–20.

[17] A. W. Siegman and T. M. Dembroski, In search of coronary-prone
behavior: Beyond Type A. Psychology Press, 2013.

[18] A. Xenos, J. Pavlopoulos, and I. Androutsopoulos, “Context sensitivity
estimation in toxicity detection,” in Proceedings of the 5th Workshop on
Online Abuse and Harms (WOAH 2021), 2021, pp. 140–145.

[19] J. Pavlopoulos, L. Laugier, A. Xenos, J. Sorensen, and I. Androutsopou-
los, “From the detection of toxic spans in online discussions to the
analysis of toxic-to-civil transfer,” in Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2022, pp. 3721–3734.

[20] F. T. Boishakhi, P. C. Shill, and M. G. R. Alam, “Multi-modal hate
speech detection using machine learning,” in 2021 IEEE International
Conference on Big Data (Big Data). IEEE, 2021, pp. 4496–4499.

[21] T. Agrawal, M. Balazia, P. Müller, and F. Brémond, “Multimodal vision
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